A fast approximation for minimum spanning trees in k-dimensional space

نویسنده

  • Pravin M. Vaidya
چکیده

We study the problem of finding a minimum spanning tree on the complete graph on n points in E' , with the weight of an edge between any two points being the distance between the two points under some distance metric. A fast algorithm, which finds an approximate minimum spanning tree with wei h t a t most (1+c) times optimal in developed for the L,, q =2,3, ..., distance metrics. Moreover, if the n points are assumed to be independently and uniformly distributed in the box [0,lIk, then the probability tha t the approximate minimum spanning tree found is an exact minimum spanning tree is shown to be (1 o ( l / n ) ) . ~ ( n logn (( logn) 9 + log(€-')(logn)'.'a~('-')) time, is

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On constructing minimum spanning trees in Rk 1 Sergei

We give an algorithm to nd a minimum spanning tree in the k-dimensional space under rectilinear metric. The running time is O(8 k p k n(lg n) k?2 lg lg n) for k 3. This improves the previous bound by a factor p k lg 2 n=4 k .

متن کامل

Low-Light Trees, and Tight Lower Bounds for Euclidean Spanners

We show that for every n-point metric space M and positive integer k, there exists a spanning tree T with unweighted diameter O(k) and weight w(T ) = O(k · n) · w(MST (M)), and a spanning tree T ′ with weight w(T ′) = O(k) · w(MST (M)) and unweighted diameter O(k · n). These trees also achieve an optimal maximum degree. Furthermore, we demonstrate that these trees can be constructed efficiently...

متن کامل

A multivariate two-sample test using the Voronoi diagram

[12] A. C. Yao. On constructing minimum spanning trees in k-dimensional space and related problems.

متن کامل

Approximating k-hop Minimum Spanning Trees in Euclidean Metrics

In the minimum-cost k-hop spanning tree (k-hop MST) problem, we are given a set S of n points in a metric space, a positive small integer k and a root point r ∈ S. We are interested in computing a rooted spanning tree of minimum cost such that the longest root-leaf path in the tree has at most k edges. We present a polynomial-time approximation scheme for the plane. Our algorithm is based on Ar...

متن کامل

Bottleneck Distances and Steiner Trees in the Euclidean d-Space

Some of the most efficient heuristics for the Euclidean Steiner minimal trees in the d-dimensional space, d ≥ 2, use Delaunay tessellations and minimum spanning trees to determine small subsets of geometrically close terminals. Their low-cost Steiner trees are determined and concatenated in a greedy fashion to obtain low cost trees spanning all terminals. The weakness of this approach is that o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1984